Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Microbiol ; 60(12): 1201-1207, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2117324

ABSTRACT

Candida species cause the most prevalent fungal illness, candidiasis. Candida albicans is known to cause bloodstream infections. This species is a commensal bacterium, but it can cause hospital-acquired diseases, particularly in COVID-19 patients with impaired immune systems. Candida infections have increased in patients with acute respiratory distress syndrome. Coumarins are both naturally occurring and synthetically produced. In this study, the biological activity of 40 coumarin derivatives was used to create a three-dimensional quantitative structure activity relationship (3D-QSAR) model. The training and test minimum inhibitory concentration values of C. albicans active compounds were split, and a regression model based on statistical data was established. This model served as a foundation for the creation of coumarin derivative QSARs. This is a unique way to create new therapeutic compounds for various ailments. We constructed novel structural coumarin derivatives using the derived QSAR model, and the models were confirmed using molecular docking and molecular dynamics simulation.


Subject(s)
COVID-19 , Candidiasis , Humans , Candida albicans , Molecular Docking Simulation , Coumarins/pharmacology , Coumarins/chemistry , Quantitative Structure-Activity Relationship , Antifungal Agents/pharmacology , Antifungal Agents/chemistry
2.
PLoS One ; 17(10): e0269864, 2022.
Article in English | MEDLINE | ID: covidwho-2054309

ABSTRACT

Till now the exact mechanism and effect of biogenic silver nanoparticles on fungus is an indefinable question. To focus on this issue, the first time we prepared hydrothermal assisted thyme coated silver nanoparticles (T/AgNPs) and their toxic effect on Candida isolates were determined. The role of thyme (Thymus Vulgaris) in the reduction of silver ions and stabilization of T/AgNPs was estimated by Fourier transforms infrared spectroscopy, structure and size of present silver nanoparticles were detected via atomic force microscopy as well as high-resolution transmission electron microscopy. The biological activity of T/AgNPs was observed against Candida isolates from COVID-19 Patients. Testing of virulence of Candida species using Multiplex PCR. T/AgNPs proved highly effective against Candida albicans, Candida kruzei, Candida glabrata and MIC values ranging from 156.25 to 1,250 µg/mL and MFC values ranging from 312.5 to 5,000 µg/mL. The structural and morphological modifications due to T/AgNPs on Candida albicans were detected by TEM. It was highly observed that when Candida albicans cells were subjected to 50 and 100 µg/mL T/AgNPs, a remarkable change in the cell wall and cell membrane was observed.


Subject(s)
COVID-19 , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida , Candida albicans , Humans , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Silver/chemistry
3.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1934105

ABSTRACT

Zinc pyrithione (ZnPT) is an anti-fungal drug delivered as a microparticle to skin epithelia. It is one of the most widely used ingredients worldwide in medicated shampoo for treating dandruff and seborrheic dermatitis (SD), a disorder with symptoms that include skin flaking, erythema and pruritus. SD is a multi-factorial disease driven by microbiol dysbiosis, primarily involving Malassezia yeast. Anti-fungal activity of ZnPT depends on the cutaneous availability of bioactive monomeric molecular species, occurring upon particle dissolution. The success of ZnPT as a topical therapeutic is underscored by the way it balances treatment efficacy with formulation safety. This review demonstrates how ZnPT achieves this balance, by integrating the current understanding of SD pathogenesis with an up-to-date analysis of ZnPT pharmacology, therapeutics and toxicology. ZnPT has anti-fungal activity with an average in vitro minimum inhibitory concentration of 10-15 ppm against the most abundant scalp skin Malassezia species (Malassezia globosa and Malassezia restrica). Efficacy is dependent on the targeted delivery of ZnPT to the skin sites where these yeasts reside, including the scalp surface and hair follicle infundibulum. Imaging and quantitative analysis tools have been fundamental for critically evaluating the therapeutic performance and safety of topical ZnPT formulations. Toxicologic investigations have focused on understanding the risk of local and systemic adverse effects following exposure from percutaneous penetration. Future research is expected to yield further advances in ZnPT formulations for SD and also include re-purposing towards a range of other dermatologic applications, which is likely to have significant clinical impact.


Subject(s)
Antifungal Agents/administration & dosage , Epithelium/drug effects , Organometallic Compounds/administration & dosage , Pyridines/administration & dosage , Skin/drug effects , Administration, Cutaneous , Animals , Antifungal Agents/chemistry , Dermatitis, Seborrheic/diagnosis , Dermatitis, Seborrheic/drug therapy , Dermatitis, Seborrheic/etiology , Dysbiosis , Epidermis/drug effects , Epithelium/microbiology , Humans , Microbial Sensitivity Tests , Optical Imaging/methods , Organometallic Compounds/chemistry , Pyridines/chemistry , Skin/microbiology , Skin Absorption , Spectrum Analysis
4.
Molecules ; 27(13)2022 Jun 27.
Article in English | MEDLINE | ID: covidwho-1911488

ABSTRACT

One-step direct unimolar valeroylation of methyl α-D-galactopyranoside (MDG) mainly furnished the corresponding 6-O-valeroate. However, DMAP catalyzed a similar reaction that produced 2,6-di-O-valeroate and 6-O-valeroate, with the reactivity sequence as 6-OH > 2-OH > 3-OH,4-OH. To obtain novel antimicrobial agents, 6-O- and 2,6-di-O-valeroate were converted into several 2,3,4-tri-O- and 3,4-di-O-acyl esters, respectively, with other acylating agents in good yields. The PASS activity spectra along with in vitro antimicrobial evaluation clearly indicated that these MDG esters had better antifungal activities than antibacterial agents. To rationalize higher antifungal potentiality, molecular docking was conducted with sterol 14α-demethylase (PDB ID: 4UYL, Aspergillus fumigatus), which clearly supported the in vitro antifungal results. In particular, MDG ester 7-12 showed higher binding energy than the antifungal drug, fluconazole. Additionally, these compounds were found to have more promising binding energy with the SARS-CoV-2 main protease (6LU7) than tetracycline, fluconazole, and native inhibitor N3. Detailed investigation of Ki values, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and the drug-likeness profile indicated that most of these compounds satisfy the drug-likeness evaluation, bioavailability, and safety tests, and hence, these synthetic novel MDG esters could be new antifungal and antiviral drugs.


Subject(s)
Anti-Infective Agents , COVID-19 , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Esters/chemistry , Fluconazole , Galactose , Humans , Molecular Docking Simulation , SARS-CoV-2
5.
J Microbiol Biotechnol ; 32(7): 911-917, 2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1903591

ABSTRACT

As valuable antibiotics, microbial natural products have been in use for decades in various fields. Among them are polyene compounds including nystatin, amphotericin, and nystatin-like Pseudonocardia polyenes (NPPs). Polyene macrolides are known to possess various biological effects, such as antifungal and antiviral activities. NPP A1, which is produced by Pseudonocardia autotrophica, contains a unique disaccharide moiety in the tetraene macrolide backbone. NPP B1, with a heptane structure and improved antifungal activity, was then developed via genetic manipulation of the NPP A1 biosynthetic gene cluster (BGC). Here, we generated a Streptomyces artificial chromosomal DNA library to isolate a large-sized NPP B1 BGC. The NPP B1 BGC was successfully isolated from P. autotrophica chromosome through the construction and screening of a bacterial artificial chromosome (BAC) library, even though the isolated 140-kb BAC clone (named pNPPB1s) lacked approximately 8 kb of the right-end portion of the NPP B1 BGC. The additional introduction of the pNPPB1s as well as co-expression of the 32-kb portion including the missing 8 kb led to a 7.3-fold increase in the production level of NPP B1 in P. autotrophica. The qRT-PCR confirmed that the transcription level of NPP B1 BGC was significantly increased in the P. autotrophica strain containing two copies of the NPP B1 BGCs. Interestingly, the NPP B1 exhibited a previously unidentified SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibition activity in vitro. These results suggest that the Streptomyces BAC cloning of a large-sized, natural product BGC is a valuable approach for titer improvement and biological activity screening of natural products in actinomycetes.


Subject(s)
Biological Products , COVID-19 , Streptomyces , Anti-Bacterial Agents , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Chromosomes, Artificial, Bacterial/genetics , Cloning, Molecular , Humans , Macrolides/chemistry , Multigene Family , Nystatin/chemistry , Polyenes/chemistry , Polyenes/pharmacology , RNA, Viral , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Streptomyces/genetics
6.
Molecules ; 27(11)2022 Jun 04.
Article in English | MEDLINE | ID: covidwho-1884285

ABSTRACT

Novel 1,3,4-thiadiazole derivatives were synthesized through the reaction of methyl 2-(4-hydroxy-3-methoxybenzylidene) hydrazine-1-carbodithioate and the appropriate hydrazonoyl halides in the presence of a few drops of diisopropylethylamine. The chemical structure of the newly fabricated compounds was inferred from their microanalytical and spectral data. With the increase in microbial diseases, fungi remain a devastating threat to human health because of the resistance of microorganisms to antifungal drugs. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) have higher mortality rates in many populations. The present study aimed to find new antifungal agents using the disc diffusion method, and minimal inhibitory concentration (MIC) values were estimated by the microdilution assay. An in vitro experiment of six synthesized chemical compounds exhibited antifungal activity against Rhizopus oryzae; compounds with an imidazole moiety, such as the compound 7, were documented to have energetic antibacterial, antifungal properties. As a result of these findings, this research suggests that the synthesized compounds could be an excellent choice for controlling black fungus diseases. Furthermore, a molecular docking study was achieved on the synthesized compounds, of which compounds 2, 6, and 7 showed the best interactions with the selected protein targets.


Subject(s)
Anti-Infective Agents , COVID-19 , Thiadiazoles , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Bacteria , Fungi , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiadiazoles/chemistry , Thiadiazoles/pharmacology
7.
J Pharm Biomed Anal ; 218: 114875, 2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-1882269

ABSTRACT

Amphotericin B (ATB) is a broad spectrum antibiotic used to combat severe systemic fungal and protozoan infections. Existing and new ATB formulations designed to address the problem of poor solubility and side effects of ATB require pharmacokinetic (PK) studies and dosing controls, especially in critically ill patients. Given that, the present study was devoted to development of competitive immunoassay of ATB and its testing on real human serum samples. A novel immunogen design was based on alternative ATB carboxyl-mediated conjugation to tetanus toxoid (TTd). The resulting conjugates retained antifungal (C.albicans) activity, which indicates the preservation and spatial availability of the ergosterol-binding site, bioactive polyene epitope. Antibody generated against click reaction product, TTd-ATB(cuaac), was able to recognize a group of polyenes ATB, nystatin, natamycin and deoxycholate ATB in heterologous ELISA as 100%, 255%, 99% and 70%, respectively. The sensitivity (IC50), detection limit (IC10) and dynamic range of assay (IC20-IC80) were 6.0, 0.1 and 0.6-46 ng/mL, respectively, and made it possible to quantify total and unbound ATB in the therapeutic range of concentrations in serum. ATB recovery from spiked serum samples was in the range of 95-106% and unbound ATB fractions in ultrafiltrates were about 12%. PK parameters were estimated in single COVID-19 patient with secondary lung Rhizopus microspores infection who was treated with ATB and received veno-venous extracorporeal membrane oxygenation.


Subject(s)
Amphotericin B , COVID-19 , Antifungal Agents/chemistry , Critical Illness/therapy , Drug Monitoring , Humans , Immunoassay , Polyenes/pharmacology
8.
Mar Drugs ; 20(3)2022 Mar 20.
Article in English | MEDLINE | ID: covidwho-1760762

ABSTRACT

The world is already facing the devastating effects of the SARS-CoV-2 pandemic. A disseminated mucormycosis epidemic emerged to worsen this situation, causing havoc, especially in India. This research aimed to perform a multitargeted docking study of marine-sponge-origin bioactive compounds against mucormycosis. Information on proven drug targets and marine sponge compounds was obtained via a literature search. A total of seven different targets were selected. Thirty-five compounds were chosen using the PASS online program. For homology modeling and molecular docking, FASTA sequences and 3D structures for protein targets were retrieved from NCBI and PDB databases. Autodock Vina in PyRx 0.8 was used for docking studies. Further, molecular dynamics simulations were performed using the IMODS server for top-ranked docked complexes. Moreover, the drug-like properties and toxicity analyses were performed using Lipinski parameters in Swiss-ADME, OSIRIS, ProTox-II, pkCSM, and StopTox servers. The results indicated that naamine D, latrunculin A and S, (+)-curcudiol, (+)-curcuphenol, aurantoside I, and hyrtimomine A had the highest binding affinity values of -8.8, -8.6, -9.8, -11.4, -8.0, -11.4, and -9.0 kcal/mol, respectively. In sum, all MNPs included in this study are good candidates against mucormycosis. (+)-curcudiol and (+)-curcuphenol are promising compounds due to their broad-spectrum target inhibition potential.


Subject(s)
Antifungal Agents , Biological Products , COVID-19 Drug Treatment , Mucormycosis/drug therapy , Porifera/chemistry , SARS-CoV-2 , Animals , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacokinetics , Antifungal Agents/toxicity , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacokinetics , Biological Products/toxicity , COVID-19/complications , Coinfection , Fungal Proteins/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Mucormycosis/etiology , Toxicity Tests, Acute
9.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: covidwho-1684526

ABSTRACT

The application of machine intelligence in biological sciences has led to the development of several automated tools, thus enabling rapid drug discovery. Adding to this development is the ongoing COVID-19 pandemic, due to which researchers working in the field of artificial intelligence have acquired an active interest in finding machine learning-guided solutions for diseases like mucormycosis, which has emerged as an important post-COVID-19 fungal complication, especially in immunocompromised patients. On these lines, we have proposed a temporal convolutional network-based binary classification approach to discover new antifungal molecules in the proteome of plants and animals to accelerate the development of antifungal medications. Although these biomolecules, known as antifungal peptides (AFPs), are part of an organism's intrinsic host defense mechanism, their identification and discovery by traditional biochemical procedures is arduous. Also, the absence of a large dataset on AFPs is also a considerable impediment in building a robust automated classifier. To this end, we have employed the transfer learning technique to pre-train our model on antibacterial peptides. Subsequently, we have built a classifier that predicts AFPs with accuracy and precision of 94%. Our classifier outperforms several state-of-the-art models by a considerable margin. The results of its performance were proven as statistically significant using the Kruskal-Wallis H test, followed by a post hoc analysis performed using the Tukey honestly significant difference (HSD) test. Furthermore, we identified potent AFPs in representative animal (Histatin) and plant (Snakin) proteins using our model. We also built and deployed a web app that is freely available at https://tcn-afppred.anvil.app/ for the identification of AFPs in protein sequences.


Subject(s)
Antifungal Agents/chemistry , Antimicrobial Peptides/chemistry , Deep Learning , Drug Discovery/methods , Neural Networks, Computer , Algorithms , Antifungal Agents/pharmacology , Antimicrobial Peptides/pharmacology , Artificial Intelligence , Databases, Factual , Humans , ROC Curve , Reproducibility of Results , Software , Workflow
10.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1542586

ABSTRACT

Compounds of natural origin, an infinite treasure of bioactive chemical entities, persist as an inexhaustible resource for discovering new medicines. In this review, we summarize the naturally occurring ellagitannins, sanguiins, which are bioactive constituents of various traditional medicinal plants, especially from the Rosaceae family. In-depth studies of sanguiin H-6 as an antimicrobial, antiviral, anticancer, anti-inflammatory, and osteoclastogenesis inhibitory agent have led to potent drug candidates. In addition, recently, virtual screening studies have suggested that sanguiin H-6 might increase resistance toward SARS-CoV-2 in the early stages of infection. Further experimental investigations on ADMET (absorption, distribution, metabolism, excretion, and toxicity) supplemented with molecular docking and molecular dynamics simulation are still needed to fully understand sanguiins' mechanism of action. In sum, sanguiins appear to be promising compounds for additional studies, especially for their application in therapies for a multitude of common and debilitating ailments.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/pharmacology , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pharmacokinetics , Rosaceae/chemistry , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
11.
Molecules ; 26(22)2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1524087

ABSTRACT

A series of methyl ß-D-galactopyranoside (MGP, 1) analogs were selectively acylated with cinnamoyl chloride in anhydrous N,N-dimethylformamide/triethylamine to yield 6-O-substitution products, which was subsequently converted into 2,3,4-tri-O-acyl analogs with different acyl halides. Analysis of the physicochemical, elemental, and spectroscopic data of these analogs revealed their chemical structures. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) showed promising antifungal functionality comparing to their antibacterial activities. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests were conducted for four compounds (4, 5, 6, and 9) based on their activity. MTT assay showed low antiproliferative activity of compound 9 against Ehrlich's ascites carcinoma (EAC) cells with an IC50 value of 2961.06 µg/mL. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties whereas molecular docking identified potential inhibitors of the SARS-CoV-2 main protease (6Y84). A 150-ns molecular dynamics simulation study revealed the stable conformation and binding patterns in a stimulating environment. In-silico ADMET study suggested all the designed molecules to be non-carcinogenic, with low aquatic and non-aquatic toxicity. In summary, all these antimicrobial, anticancer and in silico studies revealed that newly synthesized MGP analogs possess promising antiviral activity, to serve as a therapeutic target for COVID-19.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Galactose/analogs & derivatives , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacokinetics , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Cell Line, Tumor , Coronavirus 3C Proteases/chemistry , Galactose/chemistry , Galactose/pharmacokinetics , Galactose/pharmacology , Gram-Positive Bacteria/drug effects , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/enzymology , Static Electricity , Thermodynamics , COVID-19 Drug Treatment
12.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: covidwho-1475773

ABSTRACT

Fungal infections or mycosis cause a wide range of diseases in humans and animals. The incidences of community acquired; nosocomial fungal infections have increased dramatically after the emergence of COVID-19 pandemic. The increase in number of patients with immunodeficiency / immunosuppression related diseases, resistance to existing antifungal compounds and availability of limited therapeutic options has triggered the search for alternative antifungal molecules. In this direction, antifungal peptides (AFPs) have received a lot of interest as an alternative to currently available antifungal drugs. Although the AFPs are produced by diverse population of living organisms, identifying effective AFPs from natural sources is time-consuming and expensive. Therefore, there is a need to develop a robust in silico model capable of identifying novel AFPs in protein sequences. In this paper, we propose Deep-AFPpred, a deep learning classifier that can identify AFPs in protein sequences. We developed Deep-AFPpred using the concept of transfer learning with 1DCNN-BiLSTM deep learning algorithm. The findings reveal that Deep-AFPpred beats other state-of-the-art AFP classifiers by a wide margin and achieved approximately 96% and 94% precision on validation and test data, respectively. Based on the proposed approach, an online prediction server is created and made publicly available at https://afppred.anvil.app/. Using this server, one can identify novel AFPs in protein sequences and the results are provided as a report that includes predicted peptides, their physicochemical properties and motifs. By utilizing this model, we identified AFPs in different proteins, which can be chemically synthesized in lab and experimentally validated for their antifungal activity.


Subject(s)
Antifungal Agents/chemistry , COVID-19 Drug Treatment , COVID-19 , Mucormycosis , Pandemics/prevention & control , Peptides/chemistry , SARS-CoV-2 , Antifungal Agents/therapeutic use , COVID-19/epidemiology , COVID-19/microbiology , Humans , Mucormycosis/drug therapy , Mucormycosis/epidemiology
13.
Molecules ; 26(6)2021 Mar 23.
Article in English | MEDLINE | ID: covidwho-1389468

ABSTRACT

Natural products are gaining more interest recently, much of which focuses on those derived from medicinal plants. The common chicory (Cichorium intybus L.), of the Astraceae family, is a prime example of this trend. It has been proven to be a feasible source of biologically relevant elements (K, Fe, Ca), vitamins (A, B1, B2, C) as well as bioactive compounds (inulin, sesquiterpene lactones, coumarin derivatives, cichoric acid, phenolic acids), which exert potent pro-health effects on the human organism. It displays choleretic and digestion-promoting, as well as appetite-increasing, anti-inflammatory and antibacterial action, all owing to its varied phytochemical composition. Hence, chicory is used most often to treat gastrointestinal disorders. Chicory was among the plants with potential against SARS-CoV-2, too. To this and other ends, roots, herb, flowers and leaves are used. Apart from its phytochemical applications, chicory is also used in gastronomy as a coffee substitute, food or drink additive. The aim of this paper is to present, in the light of the recent literature, the chemical composition and properties of chicory.


Subject(s)
Chicory/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chicory/physiology , Cooking , Food Hypersensitivity/etiology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plants, Medicinal/chemistry , COVID-19 Drug Treatment
14.
Eur J Med Chem ; 224: 113696, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1300086

ABSTRACT

The antimicrobial resistance (AMR) is an intractable problem for the world. Metal ions are essential for the cell process and biological function in microorganisms. Many metal-based complexes with the potential for releasing ions are more likely to be absorbed for their higher lipid solubility. Hence, this review highlights the clinical potential of organometallic compounds for the treatment of infections caused by bacteria or fungi in recent five years. The common scaffolds, including antimicrobial peptides, N-heterocyclic carbenes, Schiff bases, photosensitive-grand-cycle skeleton structures, aliphatic amines-based ligands, and special metal-based complexes are summarized here. We also discuss their therapeutic targets and the risks that should be paid attention to in the future studies, aiming to provide information for researchers on metal-based complexes as antimicrobial agents and inspire the design and synthesis of new antimicrobial drugs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria/drug effects , Drug Discovery , Fungi/drug effects , Organometallic Compounds/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry
15.
Molecules ; 26(12)2021 Jun 10.
Article in English | MEDLINE | ID: covidwho-1282534

ABSTRACT

Multi-drug resistant pathogens are a rising danger for the future of mankind. Iodine (I2) is a centuries-old microbicide, but leads to skin discoloration, irritation, and uncontrolled iodine release. Plants rich in phytochemicals have a long history in basic health care. Aloe Vera Barbadensis Miller (AV) and Salvia officinalis L. (Sage) are effectively utilized against different ailments. Previously, we investigated the antimicrobial activities of smart triiodides and iodinated AV hybrids. In this work, we combined iodine with Sage extracts and pure AV gel with polyvinylpyrrolidone (PVP) as an encapsulating and stabilizing agent. Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-Vis), Surface-Enhanced Raman Spectroscopy (SERS), microstructural analysis by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-Ray-Diffraction (XRD) analysis verified the composition of AV-PVP-Sage-I2. Antimicrobial properties were investigated by disc diffusion method against 10 reference microbial strains in comparison to gentamicin and nystatin. We impregnated surgical sutures with our biohybrid and tested their inhibitory effects. AV-PVP-Sage-I2 showed excellent to intermediate antimicrobial activity in discs and sutures. The iodine within the polymeric biomaterial AV-PVP-Sage-I2 and the synergistic action of the two plant extracts enhanced the microbial inhibition. Our compound has potential for use as an antifungal agent, disinfectant and coating material on sutures to prevent surgical site infections.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Aloe/chemistry , Antifungal Agents/chemistry , Gentamicins/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning/methods , Nystatin/chemistry , Plant Extracts/chemistry , Povidone/chemistry , Salvia/chemistry , Salvia officinalis/chemistry , Spectrometry, X-Ray Emission/methods , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction/methods
16.
Int J Mol Sci ; 22(9)2021 Apr 25.
Article in English | MEDLINE | ID: covidwho-1231493

ABSTRACT

Candida auris is a novel and major fungal pathogen that has triggered several outbreaks in the last decade. The few drugs available to treat fungal diseases, the fact that this yeast has a high rate of multidrug resistance and the occurrence of misleading identifications, and the ability of forming biofilms (naturally more resistant to drugs) has made treatments of C. auris infections highly difficult. This review intends to quickly illustrate the main issues in C. auris identification, available treatments and the associated mechanisms of resistance, and the novel and alternative treatment and drugs (natural and synthetic) that have been recently reported.


Subject(s)
Antifungal Agents/pharmacology , Candida/isolation & purification , Candidiasis/drug therapy , Drug Resistance, Fungal/drug effects , Antifungal Agents/chemistry , Antifungal Agents/therapeutic use , Azoles/pharmacology , Candida/drug effects , Candidiasis/microbiology , Drug Therapy, Combination , Echinocandins/pharmacology , Humans , Mycology/methods , Polyenes/pharmacology , Treatment Failure
17.
Molecules ; 25(22)2020 Nov 11.
Article in English | MEDLINE | ID: covidwho-917015

ABSTRACT

Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.


Subject(s)
Flavonoids/chemistry , Flavonoids/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cardiovascular System/drug effects , Flavonoids/economics , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Mice , Nervous System/drug effects , Neurons/drug effects , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plants/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology , Quercetin/chemistry , Quercetin/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Stroke/drug therapy , Stroke/prevention & control
18.
J Med Chem ; 64(7): 3885-3896, 2021 04 08.
Article in English | MEDLINE | ID: covidwho-1155689

ABSTRACT

Quinacrine (QC) and chloroquine (CQ) have antimicrobial and antiviral activities as well as antimalarial activity, although the mechanisms remain unknown. QC increased the antimicrobial activity against yeast exponentially with a pH-dependent increase in the cationic amphiphilic drug (CAD) structure. CAD-QC localized in the yeast membranes and induced glucose starvation by noncompetitively inhibiting glucose uptake as antipsychotic chlorpromazine (CPZ) did. An exponential increase in antimicrobial activity with pH-dependent CAD formation was also observed for CQ, indicating that the CAD structure is crucial for its pharmacological activity. A decrease in CAD structure with a slight decrease in pH from 7.4 greatly reduced their effects; namely, these drugs would inefficiently act on falciparum malaria and COVID-19 pneumonia patients with acidosis, resulting in resistance. The decrease in CAD structure at physiological pH was not observed for quinine, primaquine, or mefloquine. Therefore, restoring the normal blood pH or using pH-insensitive quinoline drugs might be effective for these infectious diseases with acidosis.


Subject(s)
Antifungal Agents/pharmacology , Chloroquine/pharmacology , Quinacrine/pharmacology , Surface-Active Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Cell Membrane/metabolism , Chloroquine/chemistry , Chloroquine/metabolism , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Molecular Structure , Monosaccharide Transport Proteins/antagonists & inhibitors , Protons , Quinacrine/chemistry , Quinacrine/metabolism , Saccharomyces cerevisiae/drug effects , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism
19.
Molecules ; 26(6)2021 Mar 23.
Article in English | MEDLINE | ID: covidwho-1154456

ABSTRACT

Bats are unique in their potential to serve as reservoir hosts for intracellular pathogens. Recently, the impact of COVID-19 has relegated bats from biomedical darkness to the frontline of public health as bats are the natural reservoir of many viruses, including SARS-Cov-2. Many bat genomes have been sequenced recently, and sequences coding for antimicrobial peptides are available in the public databases. Here we provide a structural analysis of genome-predicted bat cathelicidins as components of their innate immunity. A total of 32 unique protein sequences were retrieved from the NCBI database. Interestingly, some bat species contained more than one cathelicidin. We examined the conserved cysteines within the cathelin-like domain and the peptide portion of each sequence and revealed phylogenetic relationships and structural dissimilarities. The antibacterial, antifungal, and antiviral activity of peptides was examined using bioinformatic tools. The peptides were modeled and subjected to docking analysis with the region binding domain (RBD) region of the SARS-CoV-2 Spike protein. The appearance of multiple forms of cathelicidins verifies the complex microbial challenges encountered by these species. Learning more about antiviral defenses of bats and how they drive virus evolution will help scientists to investigate the function of antimicrobial peptides in these species.


Subject(s)
Cathelicidins/chemistry , Cathelicidins/pharmacology , Chiroptera/genetics , Spike Glycoprotein, Coronavirus/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Cathelicidins/genetics , Cathelicidins/metabolism , Computational Biology/methods , Computer Simulation , Genome , Molecular Docking Simulation , Phylogeny
20.
Molecules ; 26(2)2021 Jan 13.
Article in English | MEDLINE | ID: covidwho-1034745

ABSTRACT

Antimicrobial resistance represents a significant world-wide health threat that is looming. To meet this challenge, new classes of antimicrobial agents and the redesign of existing ones will be required. This review summarizes some of the studies that have been carried out in my own laboratories involving membrane-disrupting agents. A major discovery that we made, using a Triton X-100 as a prototypical membrane-disrupting molecule and cholesterol-rich liposomes as model systems, was that membrane disruption can occur by two distinct processes, depending on the state of aggregation of the attacking agent. Specifically, we found that monomers induced leakage, while attack by aggregates resulted in a catastrophic rupture of the membrane. This discovery led us to design of a series of derivatives of the clinically important antifungal agent, Amphotericin B, where we demonstrated the feasibility of separating antifungal from hemolytic activity by decreasing the molecule's tendency to aggregate, i.e., by controlling its monomer concentration. Using an entirely different approach (i.e., a "taming" strategy), we found that by covalently attaching one or more facial amphiphiles ("floats") to Amphotericin B, its aggregate forms were much less active in lysing red blood cells while maintaining high antifungal activity. The possibility of applying such "monomer control" and "taming" strategies to other membrane-disrupting antimicrobial agents is briefly discussed.


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Fungi/drug effects , Amphotericin B/chemistry , Antifungal Agents/chemistry , Humans , Microbial Sensitivity Tests , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL